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1. Introduction

Gauge theory/string theory correspondence of Maldacena [1 – 3] proved to be a valuable tool

in study dynamical processes in strongly coupled four dimensional gauge theory plasma.

One of the most impressive contribution of string theory to the non-equilibrium plasma

phenomena was the construction of relativistic conformal hydrodynamics [4, 5], with its

emphasis on shortcomings of widely used second order hydrodynamics of Müller-Israel-

Stewart (MIS) [6, 7].

It has been realized recently that string theory, and, in particular, dual holographic de-

scriptions of strongly coupled (2+1) dimensional collective dynamics, might shed new light

on longstanding problems in condensed matter such as the theory of quantum phase transi-

tions [8], superfluidity [9, 10], and high-temperature superconductivity [11, 12]. Our present

paper is largely motivated by these ideas. Specifically, we would like to better understand
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conformal viscous hydrodynamics of strongly coupled (2+1) quantum field theories in exter-

nal fields. Our starting point is the first order dissipative magneto-hydrodynamics proposed

by Hartnoll et.al. (HKMS) in [8]. Much like four-dimensional MIS relativistic hydrody-

namics, it is built on the idea of constructing an entropy current away from equilibrium

plus constitutive relations for dissipative currents. The entropy current is constrained to

have a positive divergence, an idea originally due to Landau and Lifshitz [13]. We already

know that this framework misses some important aspects of relativistic hydrodynamics at

second order [4], but it is a well-motivated approximation. In this paper we would like

to subject HKMS magneto-hydrodynamics1 to consistency tests by extracting transport

properties from the dispersion relation of the sound waves in strongly coupled M2-brane

plasma and comparing them with the transport coefficients obtained from analysis of the

current-current correlation functions [15, 16].

Our second motivation is to use the external field as a ‘dial’ to control the (effective)

speed of sound waves in strongly coupled plasma. Indeed, the speed of sound waves cs

in conformal plasma and in the absence of external fields is determined by simple scale

invariance, cs = 1/
√

2 in (2+1) conformal fluids, in units where the speed of light is unity.

This result is universal in relativistic (2+1) dimensional conformal hydrodynamics without

external fields. On the other hand, interesting (2+1) dimensional gapless systems, such as a

single atomic layer of graphite [17], have a much smaller speed of propagating sound waves.

Thus, if there is any hope of realistically modeling such systems in the context AdS/CFT

duality, one needs to understand how to reduce the speed of sound in holographic relativistic

plasma. In [18] it was argued that sound waves in 3+1 dimensions are coupled to the

magnetic variables of the fluid since the magnetization oscillates with the fluid density. As

a result, dispersion relation of the sound waves is affected by the external magnetic fields.

We would like to understand here whether such an effect persists in strongly coupled (2+1)

dimensional magnetic fluids which admit a dual holographic realization.

In this paper, we explore viscous hydrodynamics of strongly coupled M2-brane plasma

in external magnetic field. In the next section we discuss magneto-hydrodynamics from

the gauge theory perspective, emphasizing the necessity to appropriately scale the external

magnetic field in the hydrodynamic limit. We point out that decoupling of the shear and

sound modes in magnetic fluids requires vanishing of the equilibrium charge density (or

the corresponding chemical potential). We derive dispersion relation for the propagation

of the sound waves, explicitly demonstrating its sensitivity to the background field, similar

to what was observed in [18]. In particular, we show that we can reduce the speed of

sound by appropriately turning on a magnetic field. In section 3 we analyze magneto-

hydrodynamics of dyonic black holes in AdS4 × S7 supergravity backgrounds of M-theory.

The latter realizes a holographic dual to strongly coupled M2-brane magnetized plasma.

We study quasinormal modes of these dyonic black holes, and demonstrate, in parallel with

the field-theoretic analysis, that decoupling of the shear and the sound modes occur only for

black holes with zero electric charge. We compute dispersion relation of sound quasinormal

1We postpone detailed analysis of conformal viscous hydrodynamics in external fields to our companion

paper [14].

– 2 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
0

modes, and interpret the results within the framework of HKMS magneto-hydrodynamics.

Finally, we conclude in section 4.

2. Gauge theory magneto-hydrodynamics

2.1 Equations of motion and conformal invariance

In this paper, we are interested in hydrodynamic properties of the (2+1)-dimensional theory

living on a large number of M2-branes. One can view this theory as the three-dimensional

maximally supersymmetric gauge theory near the infrared fixed point. It also admits a

holographic description as M-theory on the manifold AdS4×S7 [1]. The state corresponding

to the thermal equilibrium is described by the black brane in AdS4 [19]. The most rigorous

way to understand the field theory equations of motion is to use this holographic duality.

For a review of the near-boundary holographic analysis of asymptotically AdS space-times

see [20].

Let gMN and AM , M,N = 0, . . . , 3 be the metric and the gauge field in AdS4.
2

To construct the dual field theory on the boundary, we have to solve the equations of

motion for gMN and AM with appropriately defined boundary conditions gMN → g
(0)
µν and

AM → A
(0)
µ , µ, ν = 0, 1, 2. According to the AdS/CFT dictionary [21, 19], the boundary

correlation functions are encoded in the renormalized action Sren[g
(0)
µν , A

(0)
µ ]. In constructing

Sren[g
(0)
µν , A

(0)
µ ] one can perform the integral over the AdS radial coordinate and it becomes

a functional on the boundary. This procedure of constructing the renormalized boundary

action is known by the name “holographic renormalization”. Then, the boundary stress-

energy tensor and the current are defined as

δSren[g(0)
µν , A(0)

µ ] =

∫

d3x
√
−g

(

1

2
〈Tµν〉δg(0)µν + 〈Jµ〉δA(0)

µ

)

. (2.1)

The field theory equations of motion become the consequences of the symmetries of the

action Sren. Since Sren is invariant under diffeomorphisms and gauge transformations it

follows that we have the boundary conservation equations of the form

∇νT
µν = FµνJν ,

∇µJµ = 0 , (2.2)

where, to simplify notation, we have removed the brackets 〈〉. To derive eqs. (2.2) one has

to assume that the diffeomorphisms and gauge transformations act non-trivially on the

boundary. However, in the bulk there is a special type of diffeomorphism which does not

transform the coordinates xµ on the boundary and whose boundary effect is to Weyl rescale

the metric g
(0)
µν [22]. Such diffeomorphism can also act non-trivially on the boundary gauge

potential [23]. In appendix A we show that the induced transformation on the boundary

2For purposes of the paper, we will specialize to the case of the four-dimensional AdS space with three-

dimensional boundary and restrict ourselves to the the metric and gauge bulk fields. Of course, this analysis

can be made more general. See [20] and references therein for details.

– 3 –



J
H
E
P
1
2
(
2
0
0
8
)
0
9
0

gauge field is trivial for a massless bulk gauge field. Therefore, under such diffeomorphism,

the boundary fields transform as

δg(0)µν = −2σ(x)g(0)µν , δA(0)
µ = 0 , (2.3)

where σ(x) is the transformation parameter. See eq. (A.4) in appendix A. The renormalized

action Sren has to be invariant under all the bulk diffeomorphisms. The invariance under

these transformations implies that3

T µ
µ = 0 . (2.4)

Therefore, conformal invariance is unbroken by the presence of the background gauge field.

The unbroken conformal invariance can also be understood intuitively if one recalls that

the fact that the gauge field goes to a finite xµ dependent piece A
(0)
µ (x) on the boundary

(see appendix A), means that in field theory it represents a marginal deformation [19].

In this paper, we consider hydrodynamics in the presence of the net charge density ρ

and the background magnetic field B. For simplicity, we will drop the label “(0)” from the

boundary fields in what follows and denote the bulk and the boundary fields by the same

letter. However, from the context it will be clear whether the corresponding field belongs

to the bulk or to the boundary.

2.2 The first order hydrodynamics

In this subsection, we study hydrodynamic perturbations in the presence of the charge

density ρ and the magnetic field B. For our purposes, we can take the boundary metric to

be flat and the equations of motion become

∂νT µν = FµνJν ,

∂µJµ = 0 , (2.5)

where Fµν is the field strength corresponding to the background electromagnetic field. One

can do the standard decomposition of the stress tensor,

T µν = ǫuµuν + P∆µν + Πµν , (2.6)

where

∆µν = ηµν + uµuν , Πµ
νu

ν = 0 , (2.7)

and ǫ and P are the energy density and the pressure respectively. In writing eq. (2.6) we

are working in the so-called “energy frame”, and the four velocity of the fluid uµ is defined

by the eigenvalue equation T µ
ν uν = −ǫuµ. It was argued in [8] that in the presence of the

magnetic field the pressure P differs from the usual thermodynamic pressure p by the term

−MB, where M is the magnetization. The dissipative term Πµν is given by

Πµν = −ησµν − ζ∆µν(∂αuα) , (2.8)

3The right hand side of this equation has to be supplemented by the conformal anomaly which can

also be computed holographically [24]. However, it is not relevant for our discussion since the conformal

anomaly vanishes in odd dimensions. In the case of four-dimensional hydrodynamics it is relevant at fourth

order as pointed out in [4].
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where

σµν = ∆µα∆νβ(∂αuβ + ∂β∂α) − ∆µν(∂γuγ) , (2.9)

and η and ζ are the shear and bulk viscosity. Note that Πµν is, by definition, zero at

local equilibrium.

Now we consider the current Jµ. It is given by

Jµ = ρuµ + νµ , (2.10)

where νµ is the dissipative part satisfying uµνµ = 0. The expression for it can be obtained

from the argument that the entropy production has to be positive. It was done in [8] and

the result is

νµ = σQ∆µν(−∂νµ + Fναuα +
µ

T
∂νT ) . (2.11)

In this expression, T is the temperature, µ is the chemical potential, Fµν is the background

field strength and σQ is the DC conductivity coefficient. In the case under consideration

F0i = 0 , i = 1, 2 , Fij = ǫijB . (2.12)

We would like to study fluctuations around the equilibrium state in which

uµ = (1, 0, 0) , T = const. , µ = const. . (2.13)

As an independent set of variables we will choose the two components of the velocity

δu1 ≡ δux, δu2 ≡ δuy as well as δT and δµ. As usual, all perturbations are of the plane-

wave form exp(−iωt + iqy). We find that the relevant fluctuations of T µν are

δT tt = δǫ =

(

∂ǫ

∂µ

)

T

δµ +

(

∂ǫ

∂T

)

µ

δT ,

δT ti = (ǫ + P )δui ,

δT xy = −η∂yδux ,

δT yy = δP − (η + ζ)∂yδuy =

(

∂P

∂µ

)

T

δµ +

(

∂P

∂T

)

µ

δT − (η + ζ)∂yδuy .

(2.14)

Note that since P is different from the thermodynamic pressure,
(

∂P
∂µ

)

T
and

(

∂P
∂T

)

µ
do not

coincide with the charge density ρ and the entropy density s. The equalities, however, hold

when we set B = 0. Similarly, we obtain the following fluctuations of the current

δJ t = δρ =

(

∂ρ

∂µ

)

T

δµ +

(

∂ρ

∂T

)

µ

δT ,

δJx = ρδux + σQBδuy ,

δJy = ρδuy + σQ

(

− ∂yδµ +
µ

T
∂yδT − Bδux

)

. (2.15)
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Substituting these expressions into equations of motion (2.5) and performing a Fourier

transformation we get the following system of equations

0 =ω

(

(

∂ǫ

∂µ

)

T

δµ +

(

∂ǫ

∂T

)

µ

δT

)

− q(ǫ + P )δuy ,

0 =ω(ǫ + P )δuy − q

(

(

∂P

∂µ

)

T

δµ +

(

∂P

∂T

)

µ

δT

)

+ iq2(η + ζ)δuy + iσQB2δuy + iBρδux ,

0 =ω(ǫ + P )δux − qBσQ

(

δµ − µ

T
δT

)

− iBρδuy + iσQB2δux + iq2ηδux ,

0 =ω

(

(

∂ρ

∂µ

)

T

δµ +

(

∂ρ

∂T

)

µ

δT

)

− qρδuy + qσQBδux + iq2σQ

(

δµ − µ

T
δT

)

.

(2.16)

Our aim is to understand how sound and shear modes are modified in the presence

of the charge density and the magnetic field. However, eqs. (2.16) are all coupled to each

other and it does not seem to be meaningful to ask what happens to the sound and shear

modes separately. On the other hand, there is a regime in which these equations simplify

and decouple into the two independent pairs. First, we will consider hydrodynamics with

no charge density and no chemical potential

ρ = 0 , µ = 0 . (2.17)

In addition, motivated by M2-brane magneto-hydrodynamics, we will set
(

∂ρ

∂T

)

µ

= 0 ,

(

∂ǫ

∂µ

)

T

= 0 ,

(

∂ρ

∂µ

)

T

6= 0 ,

(

∂ǫ

∂T

)

µ

6= 0 . (2.18)

Conditions (2.18) are also satisfied at ρ = 0, µ = 0 on the supergravity side which will be

studied in the next section. Then, equations (2.16) get separated into the two decoupled

pairs. The first pair reads

ω

(

∂ǫ

∂T

)

µ

δT − q(ǫ + P )δuy = 0 ,

ω(ǫ + P )δuy − q

(

∂P

∂T

)

µ

δT + iq2(η + ζ)δuy + iσQB2δuy = 0 . (2.19)

If we set B = 0, these two equations describe the sound mode with dispersion relation

ω = ±csq − iq2 η + ζ

ǫ + P
, (2.20)

where the speed of sound is defined, as usual, as c2
s = ∂P

∂ǫ . We will refer to this pair of

equation as to the sound mode equations. The second decoupled pair of equations becomes

ω(ǫ + P )δux − qBσQδµ + iσQB2δux + iq2ηδux = 0 ,

ω

(

∂ρ

∂µ

)

T

δµ + qσQBδux + iq2σQδµ = 0 . (2.21)
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In the absence of the magnetic field these two equations describe a shear perturbation δux

with dispersion relation

ω = −iq2 η

ǫ + P
, (2.22)

and a diffusive mode δµ with dispersion relation

ω = −iq2 σQ
(

∂ρ
∂µ

)

T

. (2.23)

We will refer to these equations as to the shear mode equations.

In the presence of the magnetic field all these solutions (2.20), (2.22) and (2.23) dis-

appear. From the sound mode equations we obtain one constant solution

ω = −i
σQB2

ǫ + P
+ O(q2) , (2.24)

and a diffusive mode

ω = −iq2c2
s

ǫ + P

σQB2
+ O(q4) . (2.25)

From the shear mode equations we also obtain a constant mode (2.24) and a subdiffu-

sive mode

ω = −iq4 η

B2
(

∂ρ
∂µ

)

T

+ O(q6) . (2.26)

In this analysis it has been assumed that the magnetic field B is held fixed in the hydro-

dynamic limit.

However, it is not clear whether the solutions (2.25) and (2.26) can be trusted. The

first hint that the regime of constant B in the hydrodynamic limit might not be well-defined

comes from inspecting the B-dependent term in eq. (2.11). The conductivity coefficient σQ

is of order the free mean path ℓ. Therefore, at B = 0 each term in (2.11) is of order ℓ
L where

L is the scale over which the derivatives vary. However, the term with Fνα at constant B is

not of this order since this term does not contain derivatives. This means that this term is

not small in the hydrodynamic limit ℓ
L ≪ 1. It also follows that the limit of small B does

not commute with the hydrodynamic limit. In other words, B cannot be thought of as

being a small perturbation and one can worry that the hydrodynamic analysis in this case

is unstable under higher order corrections. Let us now present a more quantitative reason

why the solutions given above might not be reliable. From equations (2.19) it follows that

if ω ∼ q2 we obtain
δT

δuy
∼ 1

q
. (2.27)

Thus, assuming that the amplitude δuy is fixed and of order unity in the hydrodynamic

limit, we find that the amplitude of δT is infinitely large. This means that the terms which

are naively of higher order because they are suppressed by higher power of ω and q can, in

fact, modify hydrodynamics at lower order because of the large amplitude.

Hence, it is more natural to study magnetic fields which vanish in the hydrodynamic

limit. That is, we consider B which scales as

B = bqp , p > 0 , (2.28)
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with b held fixed. An interesting observation is that choosing different values of p we can

probe hydrodynamics in different regimes. In this paper, we will concentrate on the sound

waves for p = 1 and p = 1/2. Below we will present the field theory results and in the next

section, we will study the holographic dual description.

Similar analysis can also be performed for the shear modes. We will not do it in the

present paper.

2.3 Sound waves in magnetic field

If the magnetic field vanishes in the hydrodynamic limit, to leading order in q we can

consider the various transport coefficients and susceptibilities evaluated at B = 0. This, of

course, is consistent if we are interested in the first order hydrodynamics. If one wishes to

go to the second (or higher) order one has to keep in mind that there will be corrections

not only from the term which are of higher order in derivatives but also from the possible

B = bqp-dependence of the transport coefficients. Thus, the shear viscosity η and the

conductivity σQ can be taken to be equal to their values at B = 0. Since, as shown in

subsection 2.1, our theory is conformally invariant the bulk viscosity ζ vanishes. Further-

more, the pressure P in this case becomes the usual thermodynamic pressure p. Therefore,

we have
(

∂P

∂T

)

µ

=

(

∂p

∂T

)

µ

= s . (2.29)

In addition, we have another well-known relation

δǫ = c2
sδP , (2.30)

where c2
s = 1/2. With these simplifications, we have the following sound mode equations

ωδǫ − q(ǫ + P )δuy = 0 ,

ω(ǫ + P )δuy −
1

2
qδǫ + iq2ηδuy + iσQB2δuy = 0 . (2.31)

We would like to study solutions to these equations when B scales as bq and bq1/2.

2.3.1 The regime B = bq

Substituting B = bq into eqs. (2.31) we obtain

ωδǫ − q(ǫ + P )δuy = 0 ,

ω(ǫ + P )δuy − 1

2
qδǫ + iq2(η + σQb2)δuy = 0 . (2.32)

We see that the effect of the magnetic field is to shift the shear viscosity by the amount

σQb2. This means that the modified dispersion relation is

ω = ± 1√
2
q − iq2

2

η + σQb2

ǫ + P
. (2.33)

We obtain a sound wave whose speed is 1/
√

2 of the speed of light and with modified

attenuation.

– 8 –
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2.3.2 The regime B = bq1/2

Substituting B = bq1/2 into eq. (2.31) we obtain

ωδǫ − q(ǫ + P )δuy = 0 ,

ω(ǫ + P )δuy − 1

2
qδǫ + iq2ηδuy + iσQb2qδuy = 0 , (2.34)

and the corresponding characteristic equation becomes

ω2(ǫ + P ) + iω(ηq2 + σQb2q) − 1

2
q2(ǫ + P ) = 0 . (2.35)

Note that if we take σQ and (ǫ + P ) to be equal to their values at B = 0 we cannot trust

the ωq2 term in this equation since it will be modified due to B2 dependence of σQ and

(ǫ + P ). Then the solution becomes the following sound wave

ω1,2 = −i
σQb2

2(ǫ + P )
q ± q√

2

√

1 −
σ2

Qb4

2(ǫ + P )2

= −i
σQb2

2(ǫ + P )
q ± q√

2

(

1 −
σ2

Qb4

4(ǫ + P )2
+ O(b6)

)

. (2.36)

Note that the speed of this sound wave is different from 1/
√

2 and is decreased in presence

of the magnetic field.

Now let us compute corrections of order q2 to the dispersion relation. Going back

to eqs. (2.19) we see that to obtain all necessary terms to the given order we need to

expand (ǫ+ P ), ∂ǫ
∂T , ∂P

∂T , σQ to next-to-leading order in B2 = b2q. Note that (η + ζ) already

multiplies q2 and, hence, can be taken in the limit of the zero magnetic field. Furthermore,

from subsection 2.1 we know that the theory is conformally invariant. Hence,

P =
ǫ

2
, (2.37)

where, as we have explained before, P = p−MB, with p being the thermodynamic pressure

and M being the magnetization. Then it follows that eq. (2.35) still holds but we have to

expand (ǫ + P ) and σQ to next-to-leading order in B2 = b2q. Let us denote

ǫ + P = E0 + qb2E1 ,

σQ = σ0 + qb2σ1 . (2.38)

For simplicity, we will work to order b4. Then we obtain the following solutions to (2.35)

ω1,2 = − iq

2E0

(

σ0b
2

E0
+ ηq +

(

σ1 −
E1

E0

)

b4q

)

± q√
2

(

1 − σ2
0b

4

4E2
0

− σ0ηb2

2E2
0

q

)

. (2.39)

This finishes our field theory consideration. Now we are going to move to the super-

gravity side. Our aim will be to reproduce the solutions discussed in this section.
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3. Supergravity magneto-hydrodynamics

3.1 Effective action and dyonic black hole geometry

The effective four-dimensional bulk action describing supergravity dual to M2-brane

plasma in the external field is given by [15]4

S4 =
1

g2

∫

dx4√−g

[

−1

4
R +

1

4
FMNFMN − 3

2

]

, (3.1)

where
1

g2
=

√
2N3/2

6π
, (3.2)

and g is the bulk coupling constant. From eq. (3.1) we obtain the following equations

of motion

RMN = 2FMLF L
N − 1

2
gMNFLP FLP − 3gMN ,

∇MFMN = 0 .
(3.3)

According to the AdS/CFT dictionary, the equilibrium state of magneto-hydrodynamics

is described by dyonic black hole geometry whose Hawking temperature is identified with

the plasma temperature on the field theory side. A dyonic black hole in AdS4 with planar

horizon is given by the following solution to eqs. (3.3) [15]

ds2
4 ≡− c1(r)

2 dt2 + c2(r)
2
[

dx2 + dy2
]

+ c3(r)
2 dr2

=
α2

r2

[

−f(r)dt2 + dx2 + dy2
]

+
1

r2

dr2

f(r)
,

F =hα2dx ∧ dy + qαdr ∧ dt ,

f(r) =1 + (h2 + q2)r4 − (1 + h2 + q2)r3 ,

(3.4)

where h, q, α are constants related to the field theory quantities as follows [15]

B = hα2 , µ = −qα ,
4πT

α
= 3 − µ2

α2
− B2

α4
, (3.5)

where B is the external magnetic field of the equilibrium M2-brane plasma, µ is its chemical

potential, and T is the plasma temperature.

Let us now review thermodynamics of dyonic black holes. It has been studied exten-

sively in [15] to which we refer for additional details. In the grand canonical ensemble the

thermodynamic potential is given by

Ω = −V2 p = V2
1

g2

α3

4

(

−1 − µ2

α2
+ 3

B2

α4

)

, (3.6)

where V2 is area of the (x, y)-plane and p is the thermodynamic pressure. Just like on the

field theory side, as the independent quantities we consider α related to the temperature

4For simplicity, we set the radius of AdS4 to unity.
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by eq. (3.5), the chemical potential µ and the magnetic field B. In terms of these variables

we can compute the energy ǫ, the entropy s and the electric charge ρ per unit area. One

obtains [15]

ǫ =
1

g2

α3

2

(

1 +
µ2

α2
+

B2

α4

)

. (3.7)

Just like on the field theory side, it coincides with the temporal component 〈T00〉 of the

stress-energy tensor. Furthermore, the entropy density is given by

s =
π

g2
α2 . (3.8)

Finally, the charge density is

ρ =
1

g2
αµ . (3.9)

In addition, we introduce the magnetization per unit area

M = − 1

V2

(

∂Ω

∂B

)

T,µ

= − 1

g2

B

α
. (3.10)

In the presence of the magnetic field, the thermodynamic pressure p is different from 〈Txx〉
by the term proportional to the magnetization. Just like on the field theory side, we

introduce the pressure P as 〈Txx〉 which equals to

P = p − MB . (3.11)

It is easy to check that

P =
ǫ

2
. (3.12)

Notice that the trace of the stress-energy tensor

〈T ν
ν 〉 = 0 (3.13)

vanishes, implying unbroken scale invariance.

In parallel to the field theory discussion in the previous section we study sound quasi-

normal modes of the magnetically charged black hole, i.e., we set

q = 0 ⇐⇒ µ = 0 . (3.14)

Then from eqs. (3.6)-(3.12) we obtain

(

∂ǫ

∂T

)

µ

=
1

g2

2α2π(3α4 − B2)

3(α4 + B2)
,

(

∂ǫ

∂µ

)

T

= 0 ,

(

∂ρ

∂T

)

µ

= 0 ,

(

∂ρ

∂µ

)

T

=
1

g2
α .

(3.15)

This is in exact agreement with our field theory conditions (2.18).
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3.2 Fluctuations

Now we study fluctuations in the background geometry

gMN → gMN + hMN ,

AM → AM + aM ,
(3.16)

where gMN and AM (dA = F ) are the black brane background configuration (3.4), and

{hMN , aM} are the fluctuations. To proceed, it is convenient to choose the gauge

htr = hxr = hyr = hrr = 0 , ar = 0 . (3.17)

To be consistent with the field theory side, we will take all the fluctuations to depend only

on (t, y, r), i.e., we have a Z2 parity symmetry along the x-axis. Strictly speaking, for this

parity to be a symmetry the reflection of the x coordinate must be accompanied by the

change of the B-field orientation:

Z2 : x → −x & h → −h . (3.18)

At a linearized level, and for the vanishing chemical potential µ = 0, we find that the

following sets of fluctuations decouple from each other

Z2 − even : {htt, hty , hxx, hyy ; ax} ,

Z2 − odd : {htx, hxy; at, ay} .
(3.19)

Notice that naively the gauge potential fluctuation ax is parity-odd, while the other two

components are parity-even. This is misleading, as it will turn out that aM ∝ h, and

thus ax is parity-even, while {at, ay} are parity-odd. The first set of fluctuations is a

holographic dual to the sound waves in the M2-brane plasma in the external magnetic

field, which is of interest here. The second set describes the shear and diffusive modes.

Note that if the electric charge of the black hole q and, hence, the chemical potential is

not zero, aM is a linear combination of the terms some of which are proportional to h and

some are proportional to q. Therefore, in this case aM does not have a definite sign under

parity (3.18). As the result, the two sets of fluctuations in eq. (3.19) no longer decouple.

To say it differently, if both h and q are non-zero, the electromagnetic background (3.4) is

not an eigenstate of the spacial parity x → −x. However, the decoupling of the sound and

shear fluctuations requires that it be an eigenstate. This is in complete agreement with our

field theory analysis. Eqs. (2.16) decouple into the two separate pairs of equations only if

we set µ = 0, ρ = 0.

Let us introduce

htt =c1(r)
2 ĥtt = e−iωt+iqy c1(r)

2 Htt ,

hty =c2(r)
2 ĥty = e−iωt+iqy c2(r)

2 Hty ,

hxx =c2(r)
2 ĥxx = e−iωt+iqy c2(r)

2 Hxx ,

hyy =c2(r)
2 ĥyy = e−iωt+iqy c2(r)

2 Hyy ,

ax =ie−iωt+iqy âx ,

(3.20)
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where {Htt,Hty,Hxx,Hyy, âx} are functions of the radial coordinate only and c1(r) and

c2(r) are defined in eq. (3.4). Expanding at a linearized level eqs. (3.3) using eqs. (3.16)

and eqs. (3.20) we find the following coupled system of ODE’s

0 = H ′′
tt + H ′

tt

[

ln
c2
1c2

c3

]′
+

1

2
[Hxx + Hyy]

′
[

ln
c2

c1

]′
− c2

3

2c2
1

(

q2 c2
1

c2
2

(Htt + Hxx)

+ω2 (Hxx + Hyy) + 2ωq Hty

)

− 3
c2
3

c4
2

h2α4 (Hxx + Hyy) + 6
c2
3

c4
2

hα2q âx , (3.21)

0 = H ′′
ty + H ′

ty

[

ln
c4
2

c1c3

]′
+

c2
3

c2
2

ωq Hxx − 4
c2
3

c4
2

hα2
(

hα2 Hty + ω âx

)

, (3.22)

0 = H ′′
xx +

1

2
H ′

xx

[

ln
c5
1c2

c2
3

]′
+

1

2
H ′

yy

[

ln
c2

c1

]′
+

c2
3

2c2
1

(

ω2(Hxx − Hyy) − q2 c2
1

c2
2

(Htt + Hxx)

−2ωqHty

)

− c2
3

c4
2

h2α4 (Hxx + Hyy) + 2
c2
3

c4
2

hα2q âx , (3.23)

0 = H ′′
yy +

1

2
H ′

yy

[

ln
c5
1c2

c2
3

]′
+

1

2
H ′

xx

[

ln
c2

c1

]′
+

c2
3

2c2
1

(

ω2(Hyy − Hxx) + q2 c2
1

c2
2

(Htt − Hxx)

+2ωqHty

)

− c2
3

c4
2

h2α4 (Hxx + Hyy) + 2
c2
3

c4
2

hα2q âx , (3.24)

0 = â′′x + â′x

[

ln
c1

c3

]′
+

c2
3

c2
1

âx

(

ω2 − c2
1

c2
2

q2

)

+
c2
3

2c2
2

hα2

(

q(Htt + Hxx + Hyy)

+2ω
c2
2

c2
1

Hty

)

. (3.25)

The number of the second order equations, of course, coincides with the number of the

independent fluctuations. Additionally, there are three first order constraints associated

with the (partially) fixed diffeomorphism invariance

0 = ω

(

[Hxx + Hyy]
′ +

[

ln
c2

c1

]′
(Hxx + Hyy)

)

+ q

(

H ′
ty + 2

[

ln
c2

c1

]′
Hty

)

, (3.26)

0 = q

(

[Htt − Hxx]
′ −
[

ln
c2

c1

]′
Htt

)

+
c2
2

c2
1

ω H ′
ty + 4 hα2 â′x

c2
2

, (3.27)

0 = [ln c1c2]
′ [Hxx + Hyy]

′ − [ln c2
2]
′ H ′

tt +
c2
3

c2
1

(

ω2 (Hxx + Hyy) + 2ωq Hty

+q2 c2
1

c2
2

(Htt − Hxx)

)

− 2
c2
3

c4
2

h2α4 (Hxx + Hyy) + 4
c2
3

c4
2

hα2q âx . (3.28)

The constraints are just the Einstein’s equations obtained by varying the action with

respect to the pure gauge metric components htr, hyr and hrr. We explicitly verified that

eqs. (3.21)-(3.25) are consistent with the constraints (3.26)-(3.28).

Now we introduce the fluctuations invariant under the residual diffeomorphisms and

gauge transformations preserving the gauge (3.17). Since we have five second-order equa-

tions and three constraints there must be two gauge invariant fluctuations. We find them
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to be

ZH =4
q

ω
Hty + 2 Hyy − 2Hxx

(

1 − q2

ω2

c′1c1

c′2c2

)

+ 2
q2

ω2

c2
1

c2
2

Htt ,

ZA =âx +
1

2q
hα2 (Hxx − Hyy) .

(3.29)

Then from eqs. (3.21)-(3.25) and (3.26)-(3.28) we obtain two decoupled (gauge invariant)

equations of motion for ZH and ZA
5

0 = AHZ ′′
H + BHZ ′

H + CHZH + DHZ ′
A + EHZA , (3.30)

0 = AAZ ′′
A + BAZ ′

A + CAZA + DAZ ′
H + EAZH . (3.31)

The connection coefficients {AH , · · · , EA} can we computed from (3.21)-(3.25), (3.26)-

(3.28) and (3.29) using explicit expressions for the ci’s, see (3.4). Since these coefficients

are very cumbersome we will not present them in the paper.6 In the next subsection, we

will present the explicit form of the equations (3.30) and (3.31) in the limit of small ω and

q. This will be sufficient for our purposes.

3.3 Boundary conditions, hydrodynamic limit and the sound wave dispersion

relation

3.3.1 Boundary conditions

According to the general prescription [25, 26], in order to obtain the dispersion relation

(poles in the retarded Green’s functions) we have to impose the following boundary condi-

tions on the gauge invariant fluctuations {ZH , ZA}.

• {ZH , ZA} must have incoming wave boundary conditions near the horizon (as r → 1);

• {ZH , ZA} must be normalizable near the boundary (as r → 0).

The second condition is imposed because coefficients of non-normalizable solutions appear

as poles in the retarded Green’s functions. Thus, setting them to zero will produce the

dispersion relation. See [26] for details.

Since the solution of interest is an incoming wave at the horizon it has the following

general structure

ZH(r) = [f(r)]β1 zH(r) , ZA(r) = [f(r)]β2 zA(r) , (3.32)

where f(r) is given by eq. (3.4) and the functions zH(r) and zA(r) are non-singular at the

horizon. Then denoting

lim
r→1

−

zH(r) → z
(0)
H 6= 0 , lim

r→1
−

zA(r) → z
(0)
A 6= 0 , (3.33)

5To achieve the decoupling one has to use the background equations of motion, i.e., the decoupling

occurs only on-shell.
6The precise form of the equations (3.30) and (3.31) is available from the authors upon request.
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we find from eq. (3.30) and eq. (3.31) that as x ≡ 1 − r → 0+ the following two equations

must be satisfied

0 = αw
2(h2 − 3)4(h2

q
2 − 3q2 + 4w2)2(4β2

1 + w
2) z

(0)
H × (1 + O(x))

+ 8(h2 − 3)4(h2
q
2−3q2 + 4w2)2(−h2

q
2+3q2+16β2−4w2)qhx

(

(3 − h2)x
)β2−β1 z

(0)
A

× (1 + O(x)) ,

(3.34)

and

0 =2αhw
2(h2 − 3)3(h2

q
2 − 3q2 + 4w2)(−h2

q
2 + 3q2 + 8β1)x z

(0)
H × (1 + O(x))

+ q(h2 − 3)4(h2
q
2 − 3q2 + 4w2)2(w2 + 4β2

2)
(

(3 − h2)x
)β2−β1 z

(0)
A × (1 + O(x)) ,

(3.35)

where we have defined w = ω/(2πT ) and q = q/(2πT ). From eqs. (3.34) and (3.35),

the existence of a nontrivial solution to (3.30) and (3.31) with incoming wave boundary

conditions implies

0 =αw
2
q((3 − h2)x)β2−β1(3 − h2)8(q2h2 + 4w2 − 3q2)4

×
{

(w2 + 4β2
2)(w2 + 4β2

1) + O(x)

}

.
(3.36)

Eq. (3.36) suggests the following critical exponents:

β1 = β2 = −i
w

2
. (3.37)

A detailed supergravity analysis of the solutions confirms that (3.37) is indeed the cor-

rect choice.

Since (3.30) and (3.31) are second order ODE’s, each of them has two independent

solutions. Analyzing (3.30), (3.31) as r → 0 shows that normalizability of zH implies that

zH(r) = O(r3) as r → 0 . (3.38)

While both solutions of zA are normalizable as r → 0, requiring a fixed background mag-

netic field at the boundary implies that

zA(r) = O(r) as r → 0 . (3.39)

3.3.2 Hydrodynamic limit with h ∝ q

The aim of this subsection is to find the holographic solution dual to hydrodynamics with

the magnetic field B ∼ q. For this we have to study physical fluctuation equations (3.30)

and (3.31), subject to the boundary conditions (3.37) and (3.38), (3.39) in the hydrody-

namic approximation, w → 0, q → 0 with w

q
and h

q
kept constant.

To facilitate the hydrodynamic scaling we parametrize

h ≡ |q|H . (3.40)
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Furthermore, we parametrize the sound quasinormal mode dispersion relation as follows

w = cs q − i

2

(

Γ q
2 + Γh h2

)

+ O
(

q
3, qh

)

, (3.41)

with {cs,Γ,Γh} kept fixed in the hydrodynamic scaling. Without loss of generality we can

assume that Γ does not depend on H2, while Γh = Γh(H2). We will look for a solution as

a power expansion in q and introduce

zH = zH,0 + i q zH,1 + O(q2) , zA = h
(

zA,0 + i q zA,1 + O(q2)
)

. (3.42)

Notice the O(h) scaling of zA in the hydrodynamic limit. This is motivated by the field

theory analysis. If ρ = 0, the x components of the current in (2.15) is proportional to the

magnetic field. Since the equations for zH and zA are homogeneous we can rescale zH(r)

and zA(r) to make zH(r) be equal to unity on the horizon. It is convenient to make a

choice that the leading solution zH,0 equals to unity and all the subleading contributions

zH,1(r), . . . vanish on the horizon. That is, we impose that

lim
r→1

−

zH(r) = 1 , lim
r→1

−

zH,0 = 1 , lim
r→1

−

zH,1 = 0 . (3.43)

To leading order in the hydrodynamic approximation, and subject to the appropriate

boundary conditions, we find from (3.30) and (3.31) that

0 = z′′H,0 −
(

(

9(4c2
s + r3 − 4)2 + 64r2(r − 1)(r2 + r + 1)(4c2

s − 3)H2
)

× (r2 + r + 1)(r − 1)r

)−1 (

9(4 − 4c2
s − r3)(4r3c2

s + 8c2
s − 8 + 4r3 − 5r6)

+ 128r2(r − 1)2(r2 + r + 1)2(4c2
s − 3)H2

)

z′H,0 +

(

(9(4c2
s + r3 − 4)2

+ 64r2(r − 1)(r2 + r + 1)(4c2
s − 3)H2)(r2 + r + 1)(r − 1)

)−1

× 81(4c2
s + r3 − 4)r4 zH,0 ,

(3.44)

and

0 =z′H,0 +
3r2

4c2
s − 2 − r3

zH,0 . (3.45)

Solving (3.45) subject to the boundary conditions (3.43) implies that

zH,0 = r3 , cs = ± 1√
2

. (3.46)

Given (3.46), it is straightforward to verify that (3.44) is satisfied as well. Thus, we have

solved the equations of motion to leading order in the hydrodynamic approximation.
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Now we move to next-to-leading order. Using (3.46), we find from (3.30) and (3.31)

the following two equations

0 =z′′H,1 −
128r2(r − 1)2(r2 + r + 1)2H2 − 9(r3 − 2)(5r6 − 6r3 + 4)

r∆3(r2 + r + 1)(r − 1)
z′H,1

+
576i (r3 − 2)H2r4

α∆3
z′A,0 −

81(r3 − 2)r4

∆3(r2 + r + 1)(r − 1)
zH,1

+
9
√

2(2H2(9Γh − 8r2) − 9 + 18Γ)(r3 − 2)r4

∆3(r2 + r + 1)(r − 1)
,

(3.47)

and

0 =z′′A,0 +
r(64(r3 − 1)(r3 + 2)H2 − 27r(r3 − 2)2)

∆3(r3 − 1)
z′A,0 +

6i r2α

∆3
z′H,1 −

18i rα

∆3
zH,1

+
9i r

√
2α(8ΓhH2(r3 − 1) + 8r3Γ − r6 − 8Γ)

2∆3(r3 − 1)
,

(3.48)

where

∆3 = 64r2(r − 1)(r2 + r + 1)H2 − 9(r3 − 2)2 . (3.49)

It is difficult to solve eqs. (3.47) and (3.48) analytically for all values of H2. However, for

our purposes it is enough to find a solution to order H2. Expanding zH,1, zA,1 and Γh

perturbatively in H2,

zH,1 = zH,1,0 + H2zH,1,1 + O(H4) , zA,0 = zA,0,0 + H2zA,0,1 + O(H4) ,

Γh = Γh,0 + O(H2) ,
(3.50)

we find that the solution satisfying the boundary conditions stated in eqs. (3.38), (3.39)

and (3.43) is given by

zH,1,0 =0 , zH,1,1 = 0 , zA,0,1 = 0 ,

zA,0,0 = −
i
√

2α
(

9 ln(r2 + r + 1) + 6
√

3 arctan
(

2r+1√
3

)

− π
√

3
)

72
,

Γ =
1

2
, Γh,0 =

8

9
.

(3.51)

Here the last line comes from requiring that zH,1 vanishes on the boundary.

3.3.3 Comparison with field theory

To summarize the results, we have obtained the following dispersion relation

w = ± 1√
2

q − i

2

(

1

2
q
2 +

8

9
H2

q
2

)

+ O
(

q
3, q2H

)

. (3.52)

Let us compare it with the field theory counterpart (2.33). For this we will rewrite eq. (3.52)

in notation of (2.33). First, we will recall that

w =
ω

2πT
, q =

q

2πT
. (3.53)
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Second, we will express the variables (H,α) which are natural to use on the supergravity

side in terms of (b, T ). We get

H =
2πTb

α2
=

2πTb

α2
0

+ O(b3q2) , (3.54)

where

α0 =
4πT

3
. (3.55)

Note that the relation is non-linear because α also depends on B = bq. However, for our

purposes it is sufficient to take it to leading order. Substituting eqs. (3.53)-(3.55) into

eq. (3.52) we obtain (up to higher order terms)

w =
1√
2

q − i

2

(

q2

4πT
+

4

3

b2q2

α3
0

)

. (3.56)

Comparing it with eq. (2.33), first, we find that

η

ǫ + P
=

1

4πT
. (3.57)

This result agrees with earlier calculations of the shear viscosity η in [27, 28]. Second,

we obtain
σQ

ǫ + P
=

4

3α3
0

. (3.58)

Recalling results for ǫ and P from subsection 3.1 we conclude that

σQ =
1

g2
. (3.59)

Thus, we reproduced the result for the conductivity coefficient (to leading order in the

magnetic field) obtained earlier in [8, 16].

We see that we have a perfect agreement with our field theory analysis and with the

earlier calculations of the transport coefficients.

3.3.4 Hydrodynamic limit with h ∝
√

|q|
In this subsection, we will study the holographic solution dual to hydrodynamics with the

magnetic field B ∼ √
q. For this we will consider the physical fluctuation equations (3.30)

and (3.31), subject to the boundary conditions (3.37) and (3.38), (3.39) in the hydrody-

namic approximation, w → 0, q → 0 with w

q
and h√

|q|
kept constant.

The analysis will be similar to the one in subsection 3.3.2. To facilitate the hydrody-

namic scaling we parametrize

h ≡
√

|q|H . (3.60)

The sound quasinormal mode dispersion relation is parametrized as follows

w =∆ h2 + cs q − i

2

(

Γ q
2 + Γh h4

)

+ O
(

q
3, q2h2, qh4, h6

)

=Γ0 q + iΓ1 q
2 + O(q3) ,

Γ0 ≡∆H2 + cs ,

Γ1 = − 1

2

(

Γ + ΓhH4

)

,

(3.61)
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with {∆, cs,Γ,Γh} kept fixed in the hydrodynamic scaling. We look for a solution as a

series in q,

zH = zH,0 + i q zH,1 + q
2 zH,2 + O(q3) , zA = h

(

zA,0 + i q zA,1 + q
2zA,2 + O(q3)

)

,

(3.62)

and impose (without loss of generality) that

lim
r→1

−

zH(r) = 1 ⇒ lim
r→1

−

zH,0 = 1 & lim
r→1

−

zH,1 = lim
r→1

−

zH,2 = 0 . (3.63)

To leading order in the hydrodynamic approximation we obtain from (3.30):

0 =z′′H,0 −
2

r
z′H,0 , (3.64)

which gives rise to the solution

zH,0 = r3 . (3.65)

Using this solution for zH,0, we find from (3.31) the following equation for zA,0

0 =z′′A,0 +
r3 + 2

(r3 − 1)r
z′A,0 +

9Γ2
0(2Γ

2
0 − 1)α

8(r3 − 1)(4Γ2
0 − 3)H2r

. (3.66)

Solving (3.66) subject to the boundary conditions (3.39) gives

zA,0 =
(2Γ2

0 − 1)Γ2
0α

32H2(4Γ2
0 − 3)

(

π
√

3 − 6
√

3 arctan
1 + 2r√

3
− 9 ln(r2 + r + 1)

)

. (3.67)

This finishes our consideration of the equations of motion to leading order. Note

that we were not able to determine any of the transport coefficients in the dispersion

relation (3.61). Moving on to next-to-leading order in the hydrodynamic approximation

we find from (3.30) and (3.31)

0 =z′′H,1 −
2

r
z′H,1 +

9i r2(r3 + 4Γ2
0 − 4)

2Γ2
0α(r3 − 1)

z′A,0 −
i r2

32(r3 − 1)2(4Γ2
0 − 3)H2

(

324 − 81r3

+ 432i (r3 − 2)H2r2Γ0 + (162r3 + 512H4r6 − 972 − 512H4r3)Γ2
0

− 576i (r3 − 2)H2r2Γ3
0 + 648Γ4

0

)

,

(3.68)

and

0 =z′′A,1 +
r3 + 2

r(r3 − 1)
z′A,1 +

3Γ2
0(4Γ

2
0 − 2 − r3)α

16H2r3(r3 − 1)(4Γ2
0 − 3)

z′H,1

+
9Γ2

0α

16rH2(r3 − 1)(4Γ2
0 − 3)

zH,1 + Jsource

[

zA,0(r); {Γ0,Γ1,H}; r
]

,

(3.69)

where the source term Jsource is a linear functional of zA,0 also depending on the transport

coefficients and the magnetic field , {Γ0,Γ1,H}, as well as explicitly on r.7

7The explicit expression for Jsource is extremely lengthy and cumbersome and we find it meaningless to

put it in the paper. It is available from the authors upon request.
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It is straightforward to analyze the asymptotic solution to (3.68) near the horizon, i.e.,

as x ≡ 1 − r → 0+. For generic values of Γ0 we find that zH,1 has a simple pole and a

logarithmic singularity near the horizon. Namely,

zH,1 =C
{

− i

32H2
ln x

}

+ finite , (3.70)

where

C = 18Γ2
0 + 16i H2Γ0 − 9 . (3.71)

Regularity at the horizon implies that C = 0. It leads to the following solution

Γ0 = cs + ∆H2 = −i
4

9
H2 ± 1√

2

√

1 − 32

81
H4 . (3.72)

Without loss of generality, we can assume that cs is independent of H2, while all the H2

dependence resides in ∆. Hence, we obtain

cs = ± 1√
2

, ∆± = −i
4

9
∓ 1

H2
√

2

(

1 −
√

1 − 32

81
H4

)

, (3.73)

where the signs ± are correlated in the above expressions. Given (3.73), a nonsingular

function zH,1 subject to the boundary conditions (3.38), (3.63) is uniquely specified:

zH,1 =
2i H2(1 − r)(16H2Γ0 + 9i)

27(32H2Γ0 − 9i)
×
(

(1 + r + r2)(12
√

3 arctan
1 + 2r√

3

+ 18 ln(1 + r + r2)) − 2
√

3π − (36 + 2
√

3π)(r + r2) − 27r3

)

.

(3.74)

Now we move on to eq (3.69). Its general solution is of the form

z′A,1 =
r2

r3 − 1

(
∫ r

0
dξ

(1 − ξ3) Ĵsource(ξ)

ξ2
+ CA,1,1

)

(3.75)

where CA,1,1 is an arbitrary integration constant and

Ĵsource(r) ≡ Jsource

[

zA,0(r); {Γ0,Γ1,H}; r
]

+
3Γ2

0(4Γ
2
0 − 2 − r3)α

16H2r3(r3 − 1)(4Γ2
0 − 3)

z′H,1

+
9Γ2

0α

16rH2(r3 − 1)(4Γ2
0 − 3)

zH,1

(3.76)

Since

Ĵsource ∝
1

r
, as r → 0+ ,

Ĵsource ∝
1

x
, as x = 1 − r → 0+ ,

(3.77)

it is clear from (3.75) that for any value of Γ1 we can adjust the integration constant CA,1,1

to remove singularity of zA,1 at the horizon, x → 0+; the second constant (obtained from
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integrating (3.75)) can be fixed to insure that zA,1 vanishes as r → 0, see (3.39). Thus, we

cannot determine Γ1 at this order. This is not surprising, given that to determine the lead-

ing order transport coefficient Γ0 we had to consider the O(q) order in the hydrodynamic

approximation of zH .

In order to determine Γ1 we have to consider O(q2) in the hydrodynamic approximation

for zH . The equation of motion for zH,2 takes the following form

0 =z′′′H,2 −
2

r
z′H,2 −

9i r2(r3 + 4Γ2
0 − 4)

2Γ2
0α(r3 − 1)

z′A,1 + Isource

[

zA,0, zH,1; {Γ0,Γ1,H}; r
]

, (3.78)

where Isource is a new source term.8 Although we can not solve analytically for zH,2, it is

straightforward to construct a power series solution, first, for zA,1 and then for zH,2 near

the horizon, x = 1 − r → 0+. Much like in (3.70), we find that zH,2 is non-singular at the

horizon, provided

Γ1 = − 1

4
− 8

9
H4 ± 2iH2(32H4 − 45)

9
√

162 − 64H4
(3.79)

where ± sign correlates with the corresponding sign in (3.72). Perturbatively in H2,

Γ1 = − 1

4
∓ i 5

√
2

9
H2 + O(H4) . (3.80)

3.3.5 Comparison with field theory

To summarize computations performed above, we have obtained the following sound wave

w = q

(

−4i

9
H2 ± 1√

2

√

1 − 32

81
H4

)

+ iq2

(

−1

4
∓ i 5

√
2

9
H2 + O(H4)

)

. (3.81)

We would like to compare it with field theory. First, we will consider terms of order q

and compare them with the field theory counterpart (2.36). Following the same logic as in

subsection 3.3.3 it is straightforward to check that terms of order q are in total agreement

with eq. (2.36) if, as before,

η

ǫ + P
=

1

4πT
, σQ =

1

g2
. (3.82)

Thus, we have obtained an agreement with field theory at leading order in q. Note that it

holds to all orders in H.

Let us now compare terms of order q2 in eq. (3.81) with the corresponding field theory

prediction (2.39). It is easy to check (it has already been done in subsection 3.3.3) that

the results agree for vanishing magnetic field. However, we have a disagreement at order

q2H2. The field theory result at this order is

w ∼ ∓
√

2
q2H2

9
, (3.83)

8Its explicit expression is too lengthy and cumbersome to be put in the paper. It is available from the

authors upon request.
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where eqs. (3.82) have been taken into account. On the contrary, the supergravity result is

w ∼ ± 5
√

2

9
q
2H2 . (3.84)

We have been unable to identify the source of this disagreement in the framework of HKMS

viscous magneto-hydrodynamics. It is natural to expect that introduction of additional

transport coefficients would resolve this puzzle. We hope to discuss this issue in more

details in [14].

4. Conclusion

In this paper we discussed propagation of the sound waves in magnetic fluids in (2+1)

dimensions. We used the strongly coupled M2-brane plasma and the general setting of

the holographic gauge theory/string theory duality to test relativistic viscous magneto-

hydrodynamics of HKMS [8]. We found that HKMS magneto-hydrodynamics, generalizing

the arguments of Landau and Lifshitz [13] in constructing dissipative entropy currents,

adequately describes propagation of sound modes to the order in the hydrodynamic limit

first sensitive to the external field. There is, however, a disagreement in next order in the

hydrodynamic approximation (still in the context of the first-order hydrodynamics). Such

a disagreement suggests that additional transport coefficients, beyond those introduced

in [8], might be needed to describe dissipation in (2+1) magnetic fluids even to first order

in the local velocity gradients.

Finally, it would be interesting to analyze shear modes in (2+1) dimensional strongly

coupled magnetic plasma. While the general theorem [29] guarantees that the shear vis-

cosity attains its universal value [30 – 32], a deeper understanding of the propagation of the

shear modes might help in constructing a general theory of relativistic viscous magneto-

hydrodynamics.
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A. Bulk diffeomorphisms and boundary Weyl transformations

In this section, we show that the holographic stress-energy tensor is indeed traceless9. For

the sake of generality, we will work in a bulk of an arbitrary dimension d + 1. We write

9Up to a possible conformal anomaly, which is known to be zero in odd dimensions.
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the metric using the Fefferman-Graham coordinates [33] as follows

ds2 =
1

r2

(

dr2 + gµν(r, x)dxµdxν
)

. (A.1)

The boundary condition on the metric is

lim
r→0

gµν(r, x) = g(0)
µν , (A.2)

where g
(0)
µν is the background metric which the gauge theory is defined. We do not need to

worry about the exact nature of the sub-leading terms.

The bulk diffeomorphisms that preserve the form of the metric (A.1) satisfy the

Killing’s equations

∇rξr = 0 , ∇(µξr) = 0 . (A.3)

We are interested in bulk diffeomorphisms that generate a Weyl transformation in the

boundary metric g
(0)
µν . One can show that such solutions have the asymptotic behavior

ξr =
σ(x)

r
+ . . . , ξµ = −1

2
∂µσ(x) + . . . (A.4)

It is straightforward to show that the transformation of the boundary metric under the

diffeomorphism (A.4) is given by

δg(0)
µν = lim

r→0
(−Lξgµν) = 2σ(x)g(0)

µν . (A.5)

In order to compute the transformation of the boundary gauge field, we need to know

the asymptotic behavior of the classical solutions of the bulk Maxwell’s equations

∇MFMN = 0 . (A.6)

In the gauge Ar = 0, Maxwell’s equations take the form

Äµ + (2 − d)Ȧµ +
1

2
gαβ ġαβȦµ + gµαġαβȦβ +

r2

√−g
gµα∂β

(√
−ggβγgαδFγδ

)

= 0 , (A.7)

∂µ

(√−ggµνȦν

)

= 0 , (A.8)

where ḟ = r∂rf . One can then look for asymptotic solutions to these equations in the form

Aµ ∼ rkA
(0)
µ (x) + . . .. One finds that the exponent k must satisfy

k(2 − d + k) = 0 . (A.9)

Therefore, the leading term near the boundary is finite (k = 0)

lim
r→0

Aµ(r, x) = A(0)
µ (x) , (A.10)

and we associate it with the boundary gauge field.
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For the sake of completeness, let us mention that in the case of a massive bulk gauge

field, the r.h.s. of the first Maxwell equation (A.7) equals m2Aµ. Therefore the asymptotic

behavior of the field is modified to

lim
r→0

Aµ(r, x) = rkA(0)
µ (x) , (A.11)

where

k =
1

2

[

d − 2 −
√

(d − 2)2 + 4m2
]

. (A.12)

We still identify A
(0)
µ (x) as the background gauge field in the field theory.

We are now ready to study the transformation properties of the bulk gauge field under

the diffeomorphisms (A.4). Our gauge is Ar = 0. However, one needs to check that the

diffeomorphisms (A.4) respect such gauge choice. That is, in general one might need to

make a compensating gauge transformation to ensure δAr = 0. The leading change in the

Ar component is

lim
r→0

δξAr = lim
r→0

(−LξAr) = rk+1A(0)
µ ∂µσ(x) . (A.13)

We see that the compensating gauge transformation must be subleading at the boundary.

More precisely, we take δλAM = ∂Mλ, and from the requirement (δξ + δλ)Ar = 0 we

find that

lim
r→0

λ = − 1

k + 2
rk+2A(0)

µ ∂µσ(x) . (A.14)

Finally, we find that the total asymptotic transformation of the gauge field in the xµ

directions is

lim
r→0

(δξ + δλ)Aµ = −kσ(x)A(0)
µ (x)rk , (A.15)

which translates to

δA(0)
µ = −kσ(x)A(0)

µ (x) . (A.16)

Inserting the transformation rules (A.5) and (A.16) into the boundary action (2.1), we

obtain the Ward identity

〈T µ
µ 〉 = k〈Jµ〉A(0)

µ , (A.17)

where k is given in eq. (A.12) for a massive gauge field. For a massless gauge field (k = 0),

which is the case of interest in this paper, we obtain a traceless stress-energy tensor.
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